
SLAM 16-833 1

Point-LIO
Sahil Chaudhary, Richa Mohta, Taylor Pool, Shreyansh Sharma

Abstract—This paper presents Point-LIO, a novel filtering
based approach to LIDAR-Inertial Odometry. The algorithm
treats inputs from Inertial Measurement Units (IMUs) and LI-
DAR sensors as proper measurement updates within an Extended
Kalman Filter (EKF) framework. Our objective is to evaluate
the performance of the Point-LIO system on data collected on
ground vehicles navigating through long, narrow corridors. Given
the necessity for real-time processing, we are implementing the
algorithm in C++. Furthermore, we enhance the algorithm’s
accuracy further by incorporating an extension based on the
Unscented Kalman Filter (UKF) - demonstrating the capability
to estimate robot state during aggresive motion.

Index Terms—State Estimation, SLAM, LIDAR, IMU, Scan
Registration, UKF.

I. INTRODUCTION

Robots are ubiquitous in the world today, ranging from
autopilot software in aircraft to home vacuum cleaners. A key
component of all robotic systems is state estimation. Simply
speaking, for a robotic agent to be of any use, it must know its
location and the shape of its environment. Similar to humans,
robots rely on sensor inputs to receive information about the
world around them. This input helps them understand their
surroundings and make decisions, much like how humans use
their senses to navigate and interact with their environment.
Over the years, a wide array of sensors have been developed
that cater to the diverse needs of robotics. These sensors are
different in terms of their functionalities as well as capabilities,
ranging from simple proximity sensors that detect the presence
of nearby objects to sophisticated cameras and LIDAR systems
that provide detailed spatial information. Two of the most
prevalent ones are Light Detection And Ranging (LIDAR) and
Inertial Measurement Units (IMU).

LIDAR is a highly accurate sensor that can be used for
precise ranging. It emits laser pulses, and measures the dura-
tion of time it takes for them to reflect back off neighbouring
objects. It uses this total travel time to calculate the distances
to objects, allowing for the creation of precise 3D maps of the
surrounding area. LIDAR’s ability to scan quickly allows it to
collect discrete points in space, creating a dense point cloud
that accurately represents the surrounding topography and
geometry, facilitating precise navigation and interaction for
robots. Robots can explore and interact with their environment
with a high degree of confidence and precision, leveraging this
comprehensive spatial data.

In robotic applications, IMU serves as an indispensable
component providing high-rate measurements of specific force
(acceleration) and angular rate (rotation) using a combination
of accelerometers and gyroscopes. It offers real-time feedback
by continuously detecting changes in rotation and acceleration,
making it crucial for tracking a robot’s motion thereby en-
abling a refined navigation and control system. By integrating

these measurements over time, the IMU calculates changes in
velocity and orientation relative to the object’s starting point.
However, because IMUs are prone to errors that accumulate
over time (known as drift), this dead reckoning becomes less
reliable the longer the object moves and hence results in
inaccurate orientation and location prediction.

The goal of this paper is to combine LIDAR and IMU
sensors together into a single filtering-based estimator. Inte-
grating these complementary sensing modalities harnesses the
strengths of each to achieve high-rate and robust odometry es-
timation, offering practical advancements in robotics for nav-
igation in varied and demanding environments. Additionally,
this integration enhances the adaptability of robotic systems to
dynamic surroundings, enabling them to effectively navigate
through complex terrains and overcome obstacles in real-time.

We show that our method does not perform well, due to the
high number of LIDAR points and sensitivity to timing. Our
approach has found that Point-LIO is not suitable for operation
on real robots, and we discourage others from attempting to
utilize this approach.

II. BACKGROUND

As stated in the introduction, we seek to show that IMU and
LIDAR can be fused together in an intelligent manner. LIDAR
is a sensor that samples at discrete points in time and returns
the range and azimuth associated with the points in question.
However, a common practice is to accumulate these points into
a scan. Even though this aggregation aids in data processing,
it introduces motion distortion, specifically when the LIDAR
is in motion at high speeds. This distortion can compromise
the accuracy of spatial measurements and pose challenges for
navigation and mapping tasks. In addition to increasing lag,
the low frame rate restricts the available bandwidth.

Fig. 1: Taken from Point LIO [5]

Traditional methods that seek to compensate for motion
distortion include constant velocity based methods [10]. Other
methods involve more sophistication, including LOAM [16],
CT-ICP [4].



SLAM 16-833 2

We take inspiration from Point-LIO, a framework that
entirely circumvents the motion distortion problem because
it processes each LIDAR point sequentially on its own. This
sequential processing of points also enables an odometry
rate in the range of kHz, whereas, in traditional scan-based
methods, it is typically 10 Hz. This enables the LIDAR
odometry rate to be even faster than the IMU odometry rate,
which is around 100 Hz.

Building on this foundation, our methodology involves the
use of point-wise processing of LIDAR points by checking
the plane correspondence of the given LIDAR point with its
five nearest neighbors, as part of the measurement model. If
the point does not lie in the plane, we add it to the map by
assuming that it is a new point. This essentially encompasses
the addition of new information to the map. If it lies in the
plane, measurement update proceeds without any changes to
the map. In order to enable fast insertion of points to the
map as well as fast querying of the five nearest neighbors
for the plane correspondence, we represent the points of the
point cloud map using a variation of the KD-Tree known as
the incremental KD-Tree. This tailored approach contributes
to the robustness and overall effectiveness of our methodology.

A KD-tree, at its base, is a binary tree where points are
inserted at each time step. When the robot reaches a particular
point or node, it searches through the KD-tree for any prior
information about that point. If the point is not present, then
it is added to the KD-tree at an appropriate location. To
efficiently process each LIDAR point in turn, the need for
rapid matching between a given point and the map of LIDAR
points is crucial. To address this, the authors in [2] developed
a KD-tree structure that can be incrementally updated over
time in a very efficient manner. However, if excessive points
accumulate, the tree can become imbalanced, making searches
through the tree computationally more expensive. Therefore,
balancing—i.e., rearranging the points.

While it is true that traditional KD-trees are incremental
in their updates, this novel data structure also incorporates
adaptive downsampling and a sophisticated rebalancing algo-
rithm that ensures optimal search efficiency and reweighting.
The incremental KD-tree specifically addresses the challenge
of real-time updates with minimal computational overhead. It
does this by allowing points to be added to the tree as they
are encountered without the need for a complete rebuild of the
structure. When the tree becomes too dense or imbalanced,
the adaptive downsampling kicks in to thin out regions with a
high concentration of points, thereby preventing the tree from
becoming overly complex and maintaining the efficiency of
search operations.

Moreover, the sophisticated rebalancing algorithm periodi-
cally evaluates the structure of the KD-tree to identify areas
where the tree may have become imbalanced. It then performs
targeted rearrangements of the nodes to ensure that the depth
of the tree remains as uniform as possible, thereby optimizing
the search path for any given point. This rebalancing is crucial
for maintaining the KD-tree’s efficiency, especially in dynamic
environments where the distribution of points can change
rapidly. This same tree was used by Point-LIO [5] and is one
of the key drivers of real time performance.

Another significant issue that arises is that IMUs can
become saturated in aggressive and fast motions, as the robot’s
angular velocity and linear acceleration might exceed the
IMU’s measuring range. This can yield the IMU to be useless
during those time-steps. In order to overcome this, we use a
stochastic process-augmented kinematic model [5], in which
the IMU measurements, which are angular velocity and linear
acceleration, are modeled as outputs of the system. This means
that they are part of the state vector and are used in the update
stage. Doing this enables us to estimate the angular velocity
and linear acceleration as part of the state, and then correct
the estimate using a filtering approach such as the Extended
Kalman Filter (EKF) or the Unscented Kalman Filter (UKF). If
during a certain maneuver or time-step the actual IMU reading
becomes saturated, we just skip the measurements from those
saturated channels, and use the current estimate of the angular
velocity and linear acceleration from the propagate model
during that time. This ensures that the system is more robust
during aggressive and fast motion, as the system can continue
to operate effectively and maintain functionality even when
the IMU measurements are saturated. Thus, overall reliability
and performance is enhanced.

The Extended Kalman Filter is a variant of the Kalman
Filter for non-linear systems. The fundamental principle of
the EKF is to linearize the measurement and system models
with respect to the current state estimation. This linearization
process makes it possible to use the Kalman Filter without any
other change. It is assumed that the noise in the system and
the measurements is parameterized by a Gaussian distribution.
However, the linearity of the system and the quality of the
first estimation of the state have a major impact on the filter’s
accuracy. Additionally, errors may occasionally result and
accumulate from the linearization procedure, particularly if the
system is highly non-linear.

An alternative to the EKF that works especially well for
non-linear systems that are parametrized with non-Gaussian
noise distributions is the Unscented Kalman Filter (UKF).
In the UKF, a collection of representative points (referred
to as sigma points) are selected deterministically rather than
linearizing the system and measurement models. Therefore
sigma points are particularly advantageous in non-linear sys-
tems as they offer a more accurate representation of the
mean and covariance of the state distribution. In order to
estimate the state’s mean and covariance in the following
time step, the UKF propagates these sigma points through the
non-linear system of propgate and measurement models. This
algorithm bypasses linearizing the process and measurements
models, thereby sidestepping the inaccuracies associated with
linearization.

Point-LIO combines point-based LIDAR point processing
with this novel state formulation and state propagation model
to make a robust and reliable state estimator. This approach
is particularly effective during aggressive and fast motion
scenarios, where traditional scan-based LIDAR processing and
IMU integration methods may falter.



SLAM 16-833 3

III. RELATED WORK

The very first modern approach to LiDAR-Inertial Odome-
try was by LOAM [16]. This approach leveraged the extraction
of planar and edge features to conduct more sophisticated
matching, thereby enhancing the accuracy and reliability of
odometry estimation. Furthermore, LiDAR Odometry operates
on the principle of scan registration, a concept deeply rooted
in the iterative closest point method [1], which plays a pivotal
role in aligning successive LiDAR scans and refining the
estimation process.

While the distinction between scan-to-scan and scan-to-
map procedures can indeed alleviate the computational work-
load for odometry, the registration of scans from one to the
next often accelerates the accumulation of drift. Furthermore,
this registration process demands significant overlap between
consecutive scans, a condition that may not be satisfied by
compact solid-state LiDARs with limited Field of View (FoV).
[7]

[13] uses a scan-to-map registration by combining IMU
measurements in an effective iterated Kalman filter approach.
A fundamental issue that the scan-to map framework faces
is maintaining the map structure such that it can not only
add points from new scans but also simultaneously allow for
efficient queries. To address this problem, an incremental k-d
tree is proposed.

The Kalman Filter [6] is one of the best works presented.
It establishes the optimal state estimation for linear systems
with Gaussian noise. It continues to be an important tool for
handling challenging estimation and localization problems and
improving system performance in a variety of disciplines, such
as navigation, control systems, and signal processing.

The fusion of IMU and LIDAR can be classified into two
broad categories. The first is a smoothing method, inspired in
part by work done on factor graphs [3]. Smoothing methods
maintain a window of states accumulated over time. They seek
to optimize for the most likely states using multiple sensor
measurements. Approaches that utilize the smoothing method
include LIO-SAM [9] and Super Odometry [17]. Another
method that also utilizes a form of smoothing, albeit in a
continuous-time formulation is Continuous Time - Iterative
Closest Point (CT-ICP) [4].

Point-LIO [5], belonging to the second classification of
sensor fusion, departs from this branch of smoothing-based
methods by emphasizing the simplicity of utilizing an Ex-
tended Kalman Filter [12]. Additionally, Point-LIO sidesteps a
fundamental problem with radially spinning LIDAR scanners,
which is motion distortion caused by each point being sampled
at different discrete time intervals. Point-LIO overcomes this
issue by recognizing that each LIDAR point has its own
individual timestamp. By utilizing the timestamp of each point
independently and processing each point in turn, Point-LIO
avoids the need for complex de-warping operations often
introducing a higher risk of failure. This ensures precise
alignment of measurements. The smoothness of the splines
also inherently prevents aggressive motions. Another common
approach is to utilize the IMU measurements for motion
compensation [14]. In order to undistort the LIDAR points,

these algorithms integrate the LiDAR pose utilizing the IMU
data within a frame. However, this method is limited by the
IMU frequency and suffers from the IMU noise and biases.

Motion distortion has been tackled by assuming constant
velocity during the frame [15]. However, this method only
applies when the scan duration is short and the motion is not
aggressive. Another popular method for motion compensation
is based on continuous-time trajectory optimization, such as
those based on B-Splines [8]. Continuous-time trajectories
compensate for the distortion of each point by enabling the
evaluation of pose at any instant in time. However, this method
is computationally expensive and takes a long time, and is
hence usually done offline.

Unfortunately, the Extended Kalman Filter represents a
sub-optimal approach to propagating Gaussian distributions
through non-linear functions. This is because of its reliance
on linear approximations, which may not adequately handle
the dynamics of the system. In order to combat this issue
and shore up the abilities of Point-LIO, we contribute an
Unscented Kalman Filter [11]. Unlike the Extended Kalman
Filter, the Unscented Kalman Filter which utilizes sigma point
samples propagated through a non-linear function to obtain a
more accurate approximation of the posterior distribution. This
approach offers improves performance in highly complex and
dynamic environments.

IV. POINT-LIO

Point-LIO consists of an Extended Kalman Filter that relies
on a state propagation step.

The equations for the IMU are given as follows:

fa = ba− bRw
wg + ba + ηa (1)

ω̂ = bω + bω + ηω (2)

Where fa is the specific forces, ba is the acceleration in
the frame of the IMU (also the body frame). Also, bRw is the
rotation from the world frame to the body frame, wg is the
gravity vector in the world frame, ba is the bias of the IMU,
and ηa is additional white noise.

Note that in our case,

wg =
[
0 0 −9.81

]T
(3)

ḃa ∼ N (0,Σba) (4)
ηa ∼ N (0,Σηa

) (5)

Now, the bias is chosen to be modeled as Brownian motion,
which is a random walk. This means that the rate of change
of the bias is modeled according to a normal distribution.

When we process an IMU measurement, we examine the
residual:

hIMU =

[
ω̂ − bω − bω
fa − ba− ba

]
(6)

By using this residual in the Kalman update equations, we
can correct the motion prediction of our robot.



SLAM 16-833 4

Fig. 2: Algorithm from Point LIO
[5]

A. Voxel Grid

The original Point-LIO paper utilized a unique data structure
to store LIDAR points in map. The name of that structure was
an incremental KD-tree. This structure was so complicated that
it warranted its own paper. The implementation was multi-
threaded and relied directly on difficult to understand POSIX
thread calls. The entry points for the threading were very
unclear, and as a whole, attempts to use or replicate the
structure were unsuccessful. Upon further investigation, we
discovered that the Point-LIO authors had created a more re-
cent branch doing away with the incremental KD-tree entirely.
Rather than build upon their previous work, they opted for a
simpler solution based on voxel grids. The voxel grid is a
standard approach in point cloud mapping that has resulted
in general success. It relies on the idea of sorting points into
voxels, or cubes representing regions of space using a hashing
function. These voxels contain a maximum number of points
and allow for fast nearest neighbor lookup. They also have the
advantage of being embarrassingly incremental. In contrast to
a KD-tree, which relies on rebalancing, dynamic deletion, and
other clever strategies to ensure real-time performance, adding
and deleting points from the voxel grid is as simple as pushing
back and popping off the front of the deque associated with
the voxel. Additionally, the hashing function associated with
finding the voxel of choice is fast and deterministic, easy to
debug. We implemented our own voxel grid from scratch in
C++, templated to accept any type that could return a 3-vector
representing its coordinates in space. Our voxel grid found
nearest neighbors extremely quickly, and constituted a large
part of our efforts.

In practice, we chose a voxel size of .25 meters, and a

Fig. 3: Velodyne VLP16

maximum of 20 points per voxel. However, these parameters
are easily changeable and can be adapted to the given envi-
ronmental demands. Furthermore, we utilized the Cantor hash
function to map each voxel coordinate to an unsigned integer.
The Cantor hash function represents a bijective map from two
non-negative integers to a non-negative integer. The purpose
of the hash function is the ensure that the correct voxel is
selected, which we can then use to find closest neighbors.
The method to find the closest neighbors to a point is to run
through all points in the corresponding voxel and then sort
those points based on distance. Because of the small number of
points contained in the voxel cell, this is the optimal approach.

B. Velodyne LIDAR Decoding

Traditional methods for LIDAR processing involve under-
standing the structure of the point cloud–where is each point
located. Because of the incremental nature of our approach,
we needed to answer an additional question: at what time
was each point collected. To answer this question, we delved
into the technical reference manual for the Velodyne VLP-
16, which was the LIDAR of choice for our project. The
Velodyne returns a single time stamp associated with the
start of each data packet, but within each packet, hundreds of
points are collected. Because of this, we implemented our own
driver processing Velodyne binary data into raw point clouds
with timestamps associated with each point. Implementing this
section required precise attention to each part of the timing
and it had to run in real time. The manual that we followed
can be found at https://velodynelidar.com/wp-content/uploads/
2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf.

C. LIDAR Measurement

When we process a LIDAR point, we first check in the map
for any possible matches using the voxel grid discussed earlier.
Following this check, if there are less than five points within
a 2 meter radius of the point itself, or if the five points do not
form a good plane fit, then the new point is added to the map.

In the case that a good plane fit consisting of more than
five points is found, we need to compute the residual, which

 https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf
 https://velodynelidar.com/wp-content/uploads/2019/12/63-9243-Rev-E-VLP-16-User-Manual.pdf


SLAM 16-833 5

Fig. 4: LIVOX Avia Sensor

Fig. 5: Equation showing the Jacobian source for relative
covariance

Fig. 6: Equation showing the Jacobian formulation

is the inner product of the normal vector, n of the plane to the
LIDAR point expressed relative to a point on the plane itself.

hLIDAR = nTp (7)

D. Kalman Update Equations

The Kalman Update equations are given by calculating
the Jacobians with respect the state of the measurement
residual. It’s important to get these Jacobians right for optimal
performance. We noticed that the Jacobians are very sparse–
with just a few nonzero entries in each matrix. Because of
this, we opted to make the Jacobians use the Eigen::Sparse
formulation, and this provided speedups for our work.

The means by which we performed the update also took
into account the fact that absolute covariance for odometry
systems is not very practical. Rather, a relative covariance
is more appropriate, where the covariance represents the
uncertainty with respect to the previous true state. Because
of this, the Kalman update equations were modified slightly
to accommodate this. The equation to do so is given by Figures
5, 6, and 7, taken from Point-LIO.

Fig. 7: Equation showing the covariance propagation from the
absolute to relative case

The need to understand the meaning behind each LIDAR
point is one of the best strengths of Point-LIO. However, this
approach was not without its shortcomings.

E. Shortcomings

We found in total three shortcomings of the Point-LIO
algorithm that made it challenging to implement in real-time.

1) Shortcomings: We found that given the high number of
points per scan, it was generally impossible to achieve the
real-time performance we sought for. This seemed to defeat
the very reason for doing Point-LIO. However, we still feel it
is a valuable result from a theoretical perspective. Regardless,
the lack of parallelism for processing individual LIDAR
points greatly slows down any LIDAR-Inertial algorithm.

2) Extended Kalman Filter: A second shortcoming
was the added linearization at each time step from the
Extended Kalman Filter. This linearization means that we
lose information in a very fast way between sampling. The
result is a less-than-optimal state estimate, especially during
times of aggressive motion, which was the point of the
algorithm in the first place.

3) IMU and LIDAR Time Synchronization: A third short-
coming was the very involved need to synchronize the IMU
and LIDAR point measurements across time. Unfortunately,
due to the fact that LIDAR measurements arrive in a packet of
30,000 points every tenth of a second, their distribution across
any given time window is non-uniform. The result is that we
can no longer assume that all LIDAR measurements have been
received prior to a given IMU measurement. And vice versa.
We decided to overcome this issue by allocating individual
buffers for both IMU and LIDAR points. When a IMU
measurement was received, we processed all LIDAR points
before the IMU measurement. Similarly, when a LIDAR point
was received, we processed all IMU measurements prior to the
time stamp associated with the LIDAR point. Unfortunately,
this still resulted in negative time differences between the
current state of the filter, and the time stamp associated with
the current measurement being processed. Ultimately, the time
synchronization required to achieve this optimal state estimate
is nontrivial and was a significant source of problems later on
in our approach. However, we were able to show nominal
performance given an IMU by itself.

V. RESULTS

Our code is available at https://github.com/taylorpool/point
lio.

The results for IMU dead reckoning and IMU data modeled
as output of the system are shown in fig. 8 and fig. 9
respectively.

https://github.com/taylorpool/point_lio
https://github.com/taylorpool/point_lio


SLAM 16-833 6

Fig. 8: IMU Dead Reckoning

Fig. 9: IMU measurements estimated as part of the state

VI. CONCLUSION

A. Learning

We learned about the methodology utilized in a Kalman
Filter, specifically how zero-mean noise plays a vital role in
the residual and update functions.

We also learned that motion distortion can be entirely short-
circuited if one is willing to pay the price of nonparallel
structures and algorithms.

Furthermore, we learned that the added complexity associ-
ated with an incremental KD-tree is not necessary and does
not constitute enough of a performance gain to warrant its use.

Implementing these algorithms in C++ was a valuable
experience that taught us much about static and dynamic
matrices, as well as dense and sparse matrices.

Finally, we also learned about processing raw Velodyne
packet data into individual points with time stamps. The
drivers currently out in the field do not have this capability,
which was very surprising to us. We postulate that many
people are not worried about motion distortion and prefer to
ignore it entirely.

B. Final Verdict

We have presented our findings implementing Point-LIO:
an algorithm for LIDAR-Inertial Odometry that seeks to
replace scan registration with point-by-point registration. We
implemented our approach in C++ with a significant amount of
effort dedicated towards mapping, processing LIDAR points,
and also forming the Extended and Unscented Kalman Filters
on-manifold. We found that Point-LIO is unsuitable for real-
time computation given the inherently sequential nature of
the processing requirements. Furthermore, we found that the
time synchronization between each individual LIDAR point
and IMU measurement to be difficult to implement properly
and wholly non-intuitive. The result was that we simply do
not recommend this algorithm for future implementations of
LIDAR-Inertial Odometry. However, we do recommend fur-
ther investigations into LIDAR-Inertial Odometry as a whole,
because this is a field that has gained much relevance through
the advent of self-driving car technology.

ACKNOWLEDGMENT

The authors would like to thank the creators of Point-
LIO, and the instructors/teaching assistants of 16-833 for their
insights during the class.

REFERENCES

[1] Paul J Besl and Neil D McKay. “Method for registration
of 3-D shapes”. In: Sensor fusion IV: control paradigms
and data structures. Vol. 1611. Spie. 1992, pp. 586–606.

[2] Yixi Cai, Wei Xu, and Fu Zhang. ikd-Tree: An Incre-
mental K-D Tree for Robotic Applications. 2021. arXiv:
2102.10808 [cs.RO].

[3] Frank Dellaert, Michael Kaess, et al. “Factor graphs
for robot perception”. In: Foundations and Trends® in
Robotics 6.1-2 (2017), pp. 1–139.

[4] Pierre Dellenbach et al. “Ct-icp: Real-time elastic lidar
odometry with loop closure”. In: 2022 International
Conference on Robotics and Automation (ICRA). IEEE.
2022, pp. 5580–5586.

[5] Dongjiao He et al. “Point-LIO: Robust High-Bandwidth
Light Detection and Ranging Inertial Odometry”. In:
Advanced Intelligent Systems 5.7 (2023), p. 2200459.

[6] Rudolph Emil Kalman. “A New Approach to Linear
Filtering and Prediction Problems”. In: Transactions of
the ASME–Journal of Basic Engineering 82.Series D
(1960), pp. 35–45.

[7] J. Lin and F. Zhang. In: 2020 IEEE International Con-
ference on Robotics and Automation (ICRA). Virtual:
IEEE, May 2020, pp. 3126–3131.

[8] J. Quenzel and S. Behnke. “Title of the Paper”. In:
2021 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS). Prague, Czech Republic: IEEE, Sept.
2021, pp. 5499–5506.

[9] Tixiao Shan et al. LIO-SAM: Tightly-coupled Lidar
Inertial Odometry via Smoothing and Mapping. 2020.
arXiv: 2007.00258 [cs.RO].

https://arxiv.org/abs/2102.10808
https://arxiv.org/abs/2007.00258


SLAM 16-833 7

[10] Ignacio Vizzo et al. “Kiss-icp: In defense of point-to-
point icp–simple, accurate, and robust registration if
done the right way”. In: IEEE Robotics and Automation
Letters 8.2 (2023), pp. 1029–1036.

[11] Eric A Wan and Rudolph Van Der Merwe. “The un-
scented Kalman filter for nonlinear estimation”. In:
Proceedings of the IEEE 2000 adaptive systems for
signal processing, communications, and control sympo-
sium (Cat. No. 00EX373). Ieee. 2000, pp. 153–158.

[12] Greg Welch, Gary Bishop, et al. “An introduction to the
Kalman filter”. In: (1995).

[13] W. Xu and F. Zhang. In: IEEE Robotics and Automation
Letters 6 (2021), p. 3317.

[14] Wei Xu et al. “Fast-lio2: Fast direct lidar-inertial odom-
etry”. In: IEEE Transactions on Robotics 38.4 (2022),
pp. 2053–2073.

[15] J. Zhang and S. Singh. “Title of the Paper”. In:
Robotics: Science and Systems. Vol. 2. Berkeley, USA,
July 2014, pp. 1–9.

[16] Ji Zhang and Sanjiv Singh. “LOAM: Lidar odometry
and mapping in real-time.” In: Robotics: Science and
systems. Vol. 2. 9. Berkeley, CA. 2014, pp. 1–9.

[17] Shibo Zhao et al. Super Odometry: IMU-centric LiDAR-
Visual-Inertial Estimator for Challenging Environments.
2021. arXiv: 2104.14938 [cs.RO].

Taylor Pool Taylor Pool is a Master’s Student in Robotics at Carnegie Mellon
University. His research lies in LIDAR-Inertial Odometry formulations and
how to push the state of the art in the field.

Richa Mohta Richa Mohta is a Master’s Student in Mechanical Engineering
at Carnegie Mellon University. Her research is in the field of motion planning
in unstructured environments.

Sahil Chaudhary Sahil Chaudhary is a Master’s Student in Mechanical
Engineering at Carnegie Mellon University. His research lies in controls and
planning.

Shreyansh Sharma Shreyansh Sharma is a Master’s Student in Mechanical
Engineering at Carnegie Mellon University. His research is in the field of
Computer Vision and Deep Learning Methods .

APPENDIX
THE INCREMENTAL KD-TREE

1) Construction
The incremental KD-Tree (iKD-Tree) starts with a set
of k-dimensional points, much like a regular KD-Tree.
To create a balanced tree, these are split recursively
into two subgroups, usually by a median split along
one of the dimensions. Sorting can be highly difficult
when attempting to identify the median at each break. It
takes O(n log n) time to sort all the points along a single
dimension and get the median, where n is the number
of points. At every level of the tree, one splits and sorts
the data recursively to create a balanced KD-Tree:

• Every n points are sorted at the first level.
• The two subsets (about n

2 points each) are sorted at
the second level.

• This keeps going until there is just one point in
every subgroup.

This is the very reason why the iKD-Tree is used. The
KD-Tree is not suited for dynamic points and hence
rebuilding the KD-tree every time for the complexity
of O(n log n) is not recommended.

2) Incremental Updates
The unique feature of an iKD-Tree is its ability to
efficiently handle incremental updates:

Insertions: When a new point needs to be inserted,
the point is added by traversing the tree from
the root to a leaf, following the binary search
property based on the point’s coordinates rela-
tive to the splitting planes. After insertion, some
balancing may be needed to maintain efficient
search times.

Deletions: To delete a point, it is located and removed
by traversing the tree. If the removal of a point
unbalances the tree, rotations or more complex
restructuring might be required.

3) Searching
Nearest Neighbor Search: The tree is traversed be-

ginning at the root in order to determine the
closest neighbour of a particular location. The
approach examines the half of the tree that
contains the target point recursively after de-
termining the distance to the point recorded at
each node. If the closest point discovered thus
far is closer to the dividing plane than it is to
the point itself, it might also search the other
half.

Range Search:Range searches work similarly to closest
neighbour searches in that they traverse the tree
and gather all points that are within a given
range (distance) of a target point.

4) Advantages of iKD-Tree
Dynamic Updating:Unlike standard KD Trees, iKD-

Trees can handle dynamic data sets where
points are frequently added or removed.

https://arxiv.org/abs/2104.14938


SLAM 16-833 8

Balanced Structure: It maintains a balanced tree struc-
ture more effectively, which is crucial for main-
taining good query performance.


	Introduction
	Background
	Related Work
	Point-LIO
	Voxel Grid
	Velodyne LIDAR Decoding
	LIDAR Measurement
	Kalman Update Equations
	Shortcomings
	Shortcomings
	Extended Kalman Filter
	IMU and LIDAR Time Synchronization


	Results
	Conclusion
	Learning
	Final Verdict

	Biographies
	Taylor Pool
	Richa Mohta
	Sahil Chaudhary
	Shreyansh Sharma

	Appendix: The Incremental KD-Tree

