PLANNING 16-782

Team Spirit: Dynamic Obstacle Avoidance for
Quadrupeds

Tariq Anwaar, Aditya Bharambe, Sahil Chaudhary, Richa Mohta, Kaustabh Paul

Abstract—Quadruped robots are increasingly employed in
scenarios demanding high mobility and adaptability, such as
disaster response, exploration, and industrial inspection. While
existing frameworks like Quad-SDK provide a robust foundation
for locomotion and control, they often fall short in handling
dynamic obstacles and complex terrains that require real-time
adaptability. This paper extends Quad-SDK by integrating ad-
vanced Z-axis planning and dynamic obstacle avoidance using a
Probabilistic Roadmap (PRM) coupled with A*-based search al-
gorithms. The proposed system ensures kinodynamically feasible
paths that account for velocity constraints, terrain traversability,
and obstacle geometry. Experimental validation demonstrates
that the enhanced framework enables quadrupeds to navigate
dynamic, unstructured environments effectively, showcasing im-
proved adaptability and robustness in real-world scenarios.

Index Terms—Dynamic Obstacle Avoidance, Collision Check-
ing, PRM, weighted A*, Global Planning

I. INTRODUCTION

Quadruped robots have become a focal point of research
due to their ability to navigate unstructured and complex
terrains. Their unique locomotion capabilities allow them to
operate effectively in environments where wheeled or tracked
robots struggle, making them invaluable for search-and-rescue
missions, industrial inspections, and exploration tasks. As
robotic systems are increasingly deployed in real-world sce-
narios, the demand for reliable, adaptive locomotion has grown
significantly.

Dynamic environments present unique challenges, requiring
quadrupeds to avoid moving obstacles, adapt to uneven terrain,
and replan paths in real-time. Existing systems often rely on
pre-defined trajectories and frame-based planning methods,
which are susceptible to delays, noise, and limited responsive-
ness during aggressive or unexpected maneuvers. Overcoming
these challenges is critical to advancing quadruped capabilities
for reliable operation in diverse settings.

This work addresses these challenges by extending Quad-
SDK, a widely used open-source framework for quadruped
locomotion. By integrating dynamic obstacle avoidance and Z-
axis planning, this project enhances the framework’s ability to
navigate complex terrains. The proposed enhancements aim to
enable quadrupeds to adapt dynamically to their surroundings,
ensuring safe and efficient navigation in real-world environ-
ments.

II. RELATED WORK

Quad-SDK, introduced by Norby et al. in 2022, provides
a comprehensive software framework for quadruped robotics,

encompassing state estimation, trajectory generation, and con-
trol mechanisms [6]]. This modular architecture has signifi-
cantly contributed to advancing quadruped locomotion, partic-
ularly in structured and semi-structured environments. How-
ever, the global planning component of Quad-SDK, relying on
RRT-Connect, exhibits limitations in dynamic environments
where real-time adaptability is paramount.

Norby and Johnson (2020) further explored motion plan-
ning for dynamic legged robots by proposing a hierarchical
approach combining global planning with reactive control [5]].
While this method effectively reduced computation overhead
and enhanced path efficiency, its reliance on static planning
frameworks constrains its performance in scenarios requiring
continuous environmental updates and rapid obstacle avoid-
ance.

Fig. 1: Spirit Quadruped

Probabilistic Roadmaps (PRM) have emerged as a robust
solution for global motion planning, particularly in high-
dimensional spaces. PRM constructs a graph of feasible paths
by randomly sampling configurations and connecting them
based on collision-free edges. PRM faces challenges due to the
need for frequent updates. Lazy PRM, introduced by Bohlin
and Kavraki, mitigates this by deferring collision checks until
a path is queried, significantly reducing computational load in
environments with sparse obstacles [1]]. These advancements
in PRM and its derivatives inspire our approach to dynamic
obstacle avoidance and Z-axis planning, where adaptability
and efficiency are critical.

Dynamic obstacle avoidance in robotics has seen significant
strides with real-time methods like D* Lite and its variants.
Koenig and Likhachev proposed D* Lite as an efficient
re-planning algorithm for dynamic environments, making it
suitable for scenarios involving frequently changing terrains
[3]. Furthermore, work by Ferguson et al. introduced Anytime
D*, which enables bounded suboptimal solutions for planning
in real-time applications [2]. These algorithms provide critical

PLANNING 16-782

insight into the adaptive planning necessary for quadruped
navigation.

Collision checking has been a central focus in robotic
planning, with bounding box-based methods providing compu-
tationally efficient means of detecting and avoiding obstacles.
Sliding window techniques, such as those discussed by Van
Den Berg et al., leverage temporal and spatial information
to enhance obstacle detection accuracy during navigation [4].
By integrating these methodologies, this work seeks to ensure
robust and reliable operation in complex terrains.

III. BACKGROUND
A. Quad-SDK

Quad-SDK, developed by the Robomechanics Lab, is
an open-source framework designed to support research in
quadruped robotics. It offers a modular architecture that
facilitates trajectory generation, state estimation, and con-
trol. Researchers and practitioners leverage this framework
to experiment with advanced locomotion and manipulation
algorithms in both simulated and real world environments.
Its integration with common robotic middleware enables a
streamlined development and testing of quadruped systems.

Despite its robustness, the Quad-SDK faces limitations
in handling dynamic and complex environments. Its current
implementation lacks support for real-time Z-axis planning
and dynamic obstacle avoidance, restricting its utility in
scenarios involving significant environmental variations. Ad-
ditionally, pre-defined trajectories often fail to account for
sudden changes in terrain or obstacle movement, limiting the
framework’s adaptability.

This project builds on Quad-SDK’s foundation, address-
ing these limitations by incorporating advanced planning
algorithms and real-time adaptability. By focusing on dy-
namic obstacle avoidance and kinodynamically feasible Z-
axis planning, the work extends Quad-SDK’s capabilities to
meet the demands of real-world, unstructured environments,
thus advancing the state of quadruped robotics. The system
architecture is shown in fig [2|

Task Terrain State
Objective Map Estimation
} |
Gos! siate Heigit Map Rovot state +
Pty Contact Hoge
Primitives
Global | 'miwe | Footstep | feomoas | Low-level
Planner Planner Controller
Parameter
N T Adaptation -~ Footsetp & 0 g
Reflexes
Obstacle
Collision
Checker

Fig. 2: System Architecture

B. Collision Checking

Collision checking in motion planning ensures that planned
paths are safe from potential collisions with static and dynamic

obstacles. The current QUAD-SDK framework has a built-in
terrain map which is 2.5D in nature (i.e, for every combination
of x and y, the map will have a particular z values). Hence, this
2.5D terrain map representation cannot be used to visualize
obstacles which have x, y, and z coordinates. In this work, the
authors rely on bounding box approximations to model the
geometry of both the quadruped robot and the surrounding
obstacles. This approach strikes a balance between computa-
tional efficiency and sufficient accuracy for real-time planning.

To handle moving obstacles, a sliding window approach has
been implemented, that incorporates dynamic updates within
the planning pipeline. This method uses a temporal horizon
to predict the future states of moving obstacles based on their
velocity and trajectory. The robot’s bounding box is updated
in real-time within this sliding window, enabling the system
to anticipate potential collisions and re-plan as necessary.

While the bounding box approach is computationally
lightweight, its effectiveness depends on careful tuning of the
bounding box dimensions to avoid overly conservative or per-
missive planning. The sliding window mechanism addresses
the challenge of dynamic environments by providing predictive
collision checks to ensure the system is responsive to changes
in obstacle positions. By combining bounding boxes with
a sliding window approach, the collision-checking module
enhances the robot’s ability to navigate safely and efficiently
in dynamic, unstructured environments.

Fig. 3: The simulation environment

IV. PLANNING ALGORITHM
A. Lazy PRM

A PRM (Probabilistic Roadmap) is a widely used sampling-
based planning algorithm that generates a graph-based rep-
resentation of a robot’s configuration space (known as the
map). It works by generating a fixed number of random nodes
within the environment and connecting these nodes based on
collision-free paths. This roadmap serves as a representation
of feasible motion paths through the environment. With a
generated map and a given start and goal state, a search-based
planner like A* can be used in conjunction to retrieve a path,
if it exists. This two-step process leverages a precomputed
map for path finding. However, the PRM generation process
is computationally expensive and hence performed offline. The
advantage lies in the fact that once generated, the graph can be
used to find paths to any combination of start and goal states.
Typically, while generating the PRM, sampled nodes that lie in

PLANNING 16-782

obstacles are rejected, ensuring that the graph represents only
collision-free paths. However, this approach is only effective
in static environments, as any changes in the environment will
necessitate regeneration of the PRM. Fig. 1 represents the
planning environment with the block representing the static
obstacle. To represent a dynamic obstacle, a uniform velocity
is applied to the block.

To address this limiation, a modification to PRM for dy-
namic environments is called Lazy PRM. Unlike traditional
PRM, this approach does not reject nodes that lie within
obstacles. Instead, it retains them in the graph, but with
an infinite cost. This modification ensures that the roadmap
remains valid even if the environment changes. When an
obstacle moves or disappears, the cost of the corresponding
nodes can be dynamically updated rather than requiring a
complete regeneration of the graph. This small modification
enables PRMs to be used in dynamic environments. The cost
updation and re-planning is handled by the A*, or for a
faster and more optimal re-planning algorithm, D* Lite. These
capabilities make Lazy PRM a powerful extension of the
PRM framework, enabling its use in dynamic and uncertain
environments where adaptability is crucial.

I Traversable edges

B Cbstrucied edges
{infinite g value)

@ Moving Obstacle

® Robot

° Goal

Fig. 4: Edge costs getting updated as obstacle is moving
through the Lazy PRM roadmap

In this paper, Lazy PRM is implemented to retain nodes
within dynamically changing obstacles, enabling efficient up-
dates to the roadmap by dynamically adjusting edge costs
during re-planning as shown in fig. @ There is a modular code

structure which utilizes key data structures such as adjacency
lists for graph representation, priority queues for A*-based
path finding, and unordered sets for managing open and closed
node lists.

Run | Number of Samples | Vertices | Build Time (s)
1 5000 3435 1.013
2 10000 5550 2.925
3 20000 8573 7.735

TABLE I: PRM Roadmap Generation

B. A* and Weighted A*

Given a graph, the A* search guarantees an optimal path
from a start state to a goal state, if it exits. This theoretical
guarantee of A* is what makes it so effective and hence an
ideal candidate for searching through the PRM. The g value
and heuristic used is shown in equation [I] and [2] respectively.

g(s") = g(s)+||s2.pos — $1.PO8||5 Wpos+||S2.vel — s1.vel||y-wyel

(D

h(s) = ||s2.pos — $1.pos||s - Wpos + ||S2.vel — s1.vel|, - wyel
2

The weighted A* is a faster modification of A* that guar-
antees € -sub-optimality, where e is the weight given to the
heuristic. The weight used in this paper is 1.7.

Additionally, this paper’s implementation incorporates kin-
odynamic constraints into its re-planning framework. These
constraints ensure that the transitions between states adhere to
the physical and dynamic limitations of the system. Metrics
such as stance time, accelerations, and ground reaction forces
(GRFs) are calculated to validate the feasibility of motion
between states. This integration guarantees that the paths
generated during re-planning are not only efficient but also
physically realizable, which is critical for applications such as
quadruped locomotion or other systems requiring adherence
to dynamic constraints. The plan generated by the planner can
be seen in fig. 3

Run | Nodes Expanded | Time Taken (s) | Path Cost
1 44 0.005 9.004
2 21 0.004 8.730
3 14 0.006 8.256

TABLE II: Performance of weighted A* Algorithm

C. Z-axis planning

One of the main objectives was to add a third dimension,
z (height), to the planner to enable height-aware navigation.
However, instead of directly sampling z, which would signifi-
cantly increase the state space size and planning complexity, a
’lazy’ approach has been implemented to improve the planning
speed. The way this is done is by first checking if the nominal z
of the robot collides with obstacles for a given x and y location.
If it clears the obstacle check, that is, no collision is detected,
z is left unchanged. However, if it collides, the minimum z

PLANNING 16-782

Fig. 5: Plan generated by PRM-A*

(the lowest height at which the robot can successfully walk)
is checked against the obstacle. If it passes the check, the robot
height is set to z minimum, effectively allowing crouching. But
if even that fails, it means that the state is invalid, as the robot
cannot fit through it despite crouching.

(a) Crouching to go under table.

(b) Traversing under the table

Fig. 6: Planning with z incorporated

This implementation ensures that height-based consider-
ations are incorporated directly into the planning process,
removing the reliance on post-processing. This not only im-
proves the planner’s computational efficiency but also en-
hances its real-time adaptability in complex environments.

D. Re-planning

In the existing implementation of the planner, which is
RRT-Connect, re-planning is done continuously. However, the
choice of whether to actually use the re-planned path depends
on whether the new plan is significantly better than the current
one or not. The current implementation checks the path quality
(i.e, path length) of the new plan proposed by replanning.

This makes sense for a static environment. However, since
the existing planner does not consider dynamic obstacles, this
metric does not account for collisions, as it is assumed that
the plans generated are collision free.

Hence, the metric to validate the new path generated through
the replanning has been updated to include collision checks
which can handle both static and dynamic obstacles. The new
plan is only used if it is collision-free, else it continues on
with the older one.

E. Shortcomings

While the proposed system demonstrates significant im-
provements in dynamic obstacle avoidance and height-aware
planning, several limitations persist that highlight areas for
future refinement:

o Search Algorithm:

A* and wA* are powerful and straightforward search
algorithms. They lack efficiency for dynamic real-
time applications as they recompute the entire path
from scratch. This recomputation leads to significant
computational overhead, especially when the system
changes frequently. Implementing dynamic variants
of A*, such as D* Lite, is recommended.

o Computational Overhead:
The integration of Lazy PRM and wA* reduces the
need for complete re-planning. However, real-time
performance in dense, highly dynamic environments
remains constrained.

+ Bounding Box Approximation:

Using bounding boxes for collision checking is
computationally efficient. It may result in overly
conservative or overly permissive planning in certain
scenarios. Fine-tuning bounding box dimensions for
diverse environments remains a challenge, poten-
tially causing suboptimal paths or unexpected col-
lisions.

o Dynamic Obstacle Prediction:
The sliding window mechanism predicts the trajec-
tories of moving obstacles. Its accuracy is limited by
the precision of velocity and trajectory estimations.

These shortcomings underline the need for ongoing research
and optimization to further enhance the adaptability, efficiency,
and robustness of the proposed planning framework.

V. RESULTS

The results demonstrate that while PRM wA* requires a
higher number of samples and generates larger path sizes
compared to RRT-Connect, it achieves significantly reduced
planning times. This highlights its suitability for real-time
applications where rapid adaptability and computational ef-
ficiency are prioritized over strict path optimality.

The links to the demonstration videos of the working of the
implemented planner are Dynamic obstacle avoidance| and |Z
planning incorporated.

The code is available here

https://drive.google.com/file/d/1ljDdFRPcnBUdAw9rY4x_biB2THGd8fhG/view?usp=sharing
https://drive.google.com/file/d/18nNM9kNhJNwyagLDz88CYX4LRdSwc3TK/view?usp=sharing
https://drive.google.com/file/d/18nNM9kNhJNwyagLDz88CYX4LRdSwc3TK/view?usp=sharing
https://github.com/RedTorus/quad-sdk-PlanningProject

PLANNING 16-782

Planner Number of Samples | Path Size(m) | Planning Time
RRT-Connect 8-12 6-8 0.01
PRM A* 20000 14 0.123
PRM wA* 20000 16 0.006

TABLE III: PRM A* vs PRM wA* vs RRT-Connect

VI. CONCLUSION

This work represents an advancement in the planning of
quadruped robots for dynamic environments in the Quad-SDK
framework. By integrating Lazy PRM with weighted A*, the
proposed system efficiently handles dynamic obstacle avoid-
ance and incorporates Z-axis planning without the need for
post-processing. The lazy approach to Z-dimension planning
successfully reduces state space complexity while maintaining
robust adaptability in real-time. This enables the robot to
dynamically adjust its height, such as crouching, to navigate
through challenging terrains.

Despite these enhancements, the system encounters limita-
tions when operating in environments with dense and highly
dynamic obstacles. The increased frequency of re-planning
and the growing state-space complexity in such scenarios can
pose significant computational challenges. These issues may
affect the system’s ability to maintain real-time performance
under extreme conditions. Future work will need to focus on
optimizing the framework to better handle these scenarios,
ensuring scalability and robust adaptability for deployment in
more demanding and complex environments.

ACKNOWLEDGMENT

The authors would like to thank the creators of Quad-
SDK, and the instructors/teaching assistants of 16-782 for their
insights.

REFERENCES

[1] Robert Bohlin and Lydia E. Kavraki. “Path Planning
Using Lazy PRM”. In: IEEE International Conference
on Robotics and Automation (ICRA). 2000, pp. 521-528.

[2] Dave Ferguson and Anthony Stentz. “Anytime RRTs”. In:
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 2006, pp. 5369-5375.

[3] Sven Koenig and Maxim Likhachev. “D* Lite”. In:
Proceedings of the AAAI Conference on Artificial Intel-
ligence. 2002, pp. 476-483.

[4] Seunglong Noh, Daeyoung Shim, and Moongu Jeon.
“Adaptive Sliding-Window Strategy for Vehicle Detec-
tion in Highway Environments”. In: 2015 IEEE 18th
International Conference on Intelligent Transportation
Systems. IEEE, 2015, pp. 660-665. DOI: 10.1109/ITSC.
2015.125. URL: https://ieeexplore.ieee.org/document/
7226849,

[5] Joseph Norby and Aaron M. Johnson. “Fast global
motion planning for dynamic legged robots”. In: 2020
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2020, pp. 3829-3836.

[6] Joseph Norby et al. “Quad-SDK: Full Stack Software
Framework for Agile Quadrupedal Locomotion”. In:
ICRA Workshop on Legged Robots. May 2022. URL:
https://leggedrobots.org/index.html.

https://doi.org/10.1109/ITSC.2015.125
https://doi.org/10.1109/ITSC.2015.125
https://ieeexplore.ieee.org/document/7226849
https://ieeexplore.ieee.org/document/7226849
https://leggedrobots.org/index.html

	Introduction
	Related Work
	Background
	Quad-SDK
	Collision Checking

	Planning Algorithm
	Lazy PRM
	A* and Weighted A*
	Z-axis planning
	Re-planning
	Shortcomings

	Results
	Conclusion

