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Abstract—The aim of this project is to implement a Model
Predictive Path Integral (MPPI) control algorithm for an RC
car platform, and compare its performance with an existing
Iterative Linear Quadratic Regulator (iLQR) controller. Tradi-
tional approaches like iLQR involve decoupling the planner and
the controller. However, MPPI couples both of them, eliminating
the need for a separate planner. The iLQR implementation uses
the FALCO planner, which uses a fixed set of pre-generated
paths that are computed offline. In contrast, our MPPI imple-
mentation randomly samples control sequences and rolls them
out, which can lead to paths that could not have been achieved
by the FALCO planner. This enables the MPPI to attain more
aggressive paths. In this report, we show our implemented MPPI
controller outperforming our system’s current iLQR/FALCO
control/planning stack.

Index Terms—Model Predictive Control, Iterative Linear
Quadratic Regulator, Model Predictive Path Integral

I. INTRODUCTION

Autonomous driving has taken the world by storm in the
past decade. Companies like Tesla, Rivian, Waymo, Uber, and
many others are continuing to invest in self-driving technology.
As such, autonomous driving has been a large focus of re-
search across academia. In 2007, Carnegie Mellon University
laid its claim as the premier institution for autonomous driving
by competing in and winning the DARPA Urban Challenge
[1]. In this competition, many of the techniques and standard
approaches used for planning and control of autonomous
vehicles were first introduced and tested.

Common planning and control stacks separate control and
planning into two distinct parts where the planner will find a
feasible path and the controller will help the car follow that
path [1], [2]:

1) Planning: Planners find possible paths through a given
environment. In autonomous driving, there are usually two
layers of planners. First, a global planner that will help con-
struct longer paths through an entire course or environment.
Global planners usually run at a lower rate but may give some
guarantee on optimality (i.e. A*, D*, RRT*). Whereas local
planners (the focus of this work) plan “around” the car and
primarily seek to avoid obstacles. To this end, lattice-based
planners are commonly used [3].

2) Control: Once a feasible path is found by the local
planner, the controller will control towards that path. Model
Predictive Control (MPC) has been very useful in this regard

for cars [4]. This is an optimal controller that calculates a
control sequence over a finite horizon and then executes a
single step. After step execution, the controller recalculates a
control sequence over the finite horizon, and then executes a
command once more.

Fig. 1. Project RC Cars

In more recent years, the focus on aggressive off-road
autonomy has increased. Programs like DARPA Racer have ac-
celerated academic research in this domain. In doing so, some
traditional planning and control methods hit their limits due
to challenging new terrain. For example, finding aggressive
feasible paths that systems can avoid can be incredibly difficult
[5]. As such, new methods have been derived to increase the
speed and versatility of off-road autonomy systems.

To this end, Model Predictive Path Integral (MPPI) control
was introduced to fuse the planning and control steps [5].
It does so by combining planning and control by sampling
control sequences and rolling out paths for each sequence.
Then, a final control sequence is calculated by averaging
sampled sequences weighted by resultant path costs. Like
traditional MPC, the first control is executed before running
the full sequence again.

Our team thought this would be very interesting to study
because it relates to ongoing projects in our lab. We have
a multi-robot system of RC cars (Fig. 1) that we drive to
explore tunnels for military and search and rescue applications.



Currently, each car is controlled with an iLQR controller with
the FALCO local planner running on the vehicles [6]. Our
current system is functional, but we were interested in running
MPPI on our system to see how it compares to the current
autonomy stack. As such, in this work, we have developed
MPPI for a simulated RC Car, and compared it to an iLQR
and FALCO planning stack.

II. RELATED WORK

In [5], MPPI is first introduced. The relationship between
free energy and relative entropy is established to prove the
optimality of MPPI. The controller is then implemented
on a fifth-scale auto-rally vehicle, and GPU was leveraged
to adequately sample the full control space and solve the
weighted cost-average problem in real-time. Since the original
publication, MPPI has had many extensions. One such of these
extensions enabled MPPI to work for non-affine dynamics [7].

Finally a multitude of extensions to increase robustness
of the algorithm and make systems better follow paths has
been introduced. For example, Tube-MPPI adds a second op-
timization layer that uses Differential Dynamic Programming
(DDP) as another tracking layer on the MPPI optimization [8].
Robust-MPPI extends this work by adding information from
the DDP controller into the MPPI step [9]. Additional methods
build off of Tube-MPPI by adding Constrained Covariance
Steering control algorithms to the controller, thus making the
car more closely follow selected paths [10], [11].

Other extensions in MPPI seek to better generate paths.
One such of these methods smooths paths [12]. Additionally,
work is being done to extend MPPI into uncertain cases,
where people have looked at planning in partially observable
environments [13].

III. CONTRIBUTIONS

Our contribution is to implement MPPI in our autonomous
robot simulation stack. We run a comparison between our
MPPI implementation and the FALCO/iLQR stack currently
implemented in our system. We compare the performance of
the controllers on the following metrics: control accuracy and
time taken to achieve a way point.

IV. METHODOLOGY

This section will briefly describe the simulation environment
in which we did all of our testing. Then, it will discuss the
Kinematic Bicycle Model that we used to model our system
and give a brief background into the existing work on our
stack, i.e., the FALCO planner and the iLQR. Finally, we
delve into detail on MPPI and implementation details of our
controller.

A. Simulation Environment

We are running a Gazebo simulation of an RC Car with
Ackermann steering. Finally, using the simulation environ-
ment, we have complete observability of our current state.
We leverage the simulation to send goal way points to the
controller. We can send a series of consecutive way points

for the car to follow. This series of way points represents the
desired trajectory that we want the car to follow.

Fig. 2. Vehicle in Gazebo virtual world

B. Kinematic Bicycle Model (KBM)

Kinematic Bicycle models are often used to simplify the
complex model of a car by approximating it as a bicycle
with non-holonomic constraints on the wheels [2]. A common
parameterization of the bicycle model is depicted below in
Fig. 3.

Fig. 3. Kinematic Bicycle Model

Using the above parameterization we define the state of the
car as its position (x, y), its yaw (θ), and its velocity (v). The
commanded inputs are the velocity (v) and the steering angle
(δ). Finally, our goal state is the x, y position of the car.

x =
[
x y θ v

]⊤
u =

[
v δ

]⊤
goal =

[
x y

]⊤ (1)

As such, all state and control inputs are elements of R1, and
L is the length of the bicycle, we can write the state update
equations as follows, where ∆t is our timestep:

xk+1 = vin cos(θk)∆t

yk+1 = vin sin(θk)∆t

θk+1 = vin tan(δin)
∆t

L
vk+1 = vin

(2)



C. Prior Work

As mentioned above, we are leveraging systems already in
our current stack. These tools will be used as a baseline to
compare our MPPI implementation. Our current stack uses a
FALCO planner to select a reference path, then uses the iLQR
to follow that path.

1) FALCO Planner: Our FALCO implementation uses the
Kinematic Bicycle Model above to build a parameterized set
of possible paths offline. Paths are parameterized by speed. So,
in the planning step, using the estimated robot speed, a set of
paths is rolled out in “front” of the current estimated position
of the robot. Assuming deterministic knowledge of obstacles,
paths that intersect obstacles are removed. Finally, the path
that minimizes distance to the goal is selected and used as the
reference path. The generated paths and the selected path can
be seen below in Fig. 4 where the generated paths are red and
the selected path is green.

Fig. 4. Visualization of pre-generated reference paths (red) and FALCO
selected path (green).

2) iLQR: iLQR is used to control the car to the reference
path. This allows for optimal control to the paths generated
by the nonlinear KBM (Eqn. 2). Additionally, this supports
inequality constraints on steering and velocity inputs in our
system. At the rate of the system update, the system will
receive a new path from the FALCO planner, and rerun the
iLQR controller.

D. Model Predictive Path Integral (MPPI) Control

Rather than including a planning and control step, MPPI
combines these steps. MPPI does this by rolling out a sequence
of paths. To roll out one path, MPPI samples a sequence of
control inputs over the steps. Then, using a predefined cost
function (Eqn. 3), the cost of each rollout is calculated. This
process occurs for N number of rollouts. Then, the final control
sent to the system is calculated using the weighted average of
all control inputs, where the weight is based directly on the
cost of the path. Mathematically, this is demonstrated in the
pseudocode reported in Algorithm 1. Here, an additional hy-

perparameter, λ, is introduced to further influence the weighted
average. For our purposes, we set λ = 1.

Algorithm 1: MPPI Pseudocode
Given : K: Number of samples;

N: Number of timesteps;
(u0, u1, ... uN−1): Initial control sequence;
A, B: System dynamics;
λ: Cost Parameters;
uinit: Value to initialize new controls to;

1 while task not completed do
2 Calculate cost per path, S̃k, from sampled control,

ũi

3 for k ← 0 to K − 1 do
4 x = xt0 ;
5 for i← 1 to N − 1 do
6 xi+1 = Axi + Bũi

7 S̃k = S̃k + calculate cost(xi,ui)
8 end
9 end

10 Average control input based on weight
11 for i← 1 to N − 1 do
12 ui =

∑K
k=1

(
exp(−1

λ S̃k)ui∑K
k=1 exp (−1

λ S̃k)

)
13 end
14 send to actuators(u0)
15 Update current state after receiving feedback;
16 Check for task completion;
17 end

In MPPI, the nonlinear system dynamics (Eqn. 2) are
directly calculated for each time step. Thus, for each path,
we can directly roll out the system parameters to create our
reference path, and the final x, y position in the rollout is xref .
Since we are only concerned about reaching the goal x and y
position, with no regard to yaw, our cost is defined as:

J = (xref − xgoal)
⊤Q(xref − xgoal) + u⊤Ru (3)

where xref ∈ R2x1, xgoal ∈ R2x1, u ∈ R2x1, Q ∈ R2x2,
R ∈ R2x2. We chose this metric for cost because we can
individually penalize the x and z error through Q. It would
have also been reasonable to use an Euclidean distance metric
to penalize the cost. One advantage of MPPI is that our cost
function does not have to be quadratic. However, squaring
the terms is necessary in this case so our cost stays positive.
Examples of generated paths are shown in Fig. 5.



Fig. 5. Visualization of sample-based roll outs (red) and ultimate MPPI-
executed path (green).

We implemented second-order constraints on the controls.
Perturbations were executed on throttle and steering effort and
multiplied by the maximum rate of change of the controls and
the time step of the rollout to more simply implement second-
order constraints on the control inputs. Additionally, to encour-
age backward driving in tight corridors (rather than completing
a forward turn-around), we ensured that a minimum number of
rollouts were executed with negative acceleration. Examples of
the paths after second order smoothing, planned over a shorter
horizon are shown in Fig. 6.

Fig. 6. Visualization of sample-based roll outs (red) and ultimate MPPI-
executed path (green), after additional constraints.

The paths shown in Fig. 5 involve no clamping, so they
don’t take into consideration the actuator limits and the maxi-
mum acceleration and steering rate that is physically possible.
As a result, these paths are more widely spread out. In contrast,
the paths shown in Fig. 6 have first order and second order

clamping. Since these constraints take into consideration the
actuator limits and maximum rate of change that is physically
possible, they are a lot less widely spread out. Also, the paths
facing the rear of the car correspond to negative velocity paths.

V. RESULTS

We compared the results of waypoint following between
iLQR and MPPI. We set 8 waypoints at different combinations
of x and y positions. We tracked the distance from the final
position of the car to the goal (Table I). Additionally, we
tracked the time it takes for the car to get to the goal position
between the methods (Table II).

TABLE I
COMPARISON OF FINAL POSITION ERRORS.

Waypoint MPPI Error (m) ilQR Error (m)

(50, 0) 0.16 1.39
(0, 50) 0.12 1.21

(50, 50) 0.28 1.17
(0, -50) 0.50 1.72
(-50, 0) 0.26 1.70

(-50, -50) 0.60 1.64
(-50, 50) 0.26 1.76
(50, -50) 0.43 1.17

TABLE II
COMPARISON OF TIME TAKEN TO WAYPOINT

Waypoint MPPI Time (s) ilQR Time (s)

(50, 0) 15.4 12.3
(0, 50) 14.6 13.2
(50, 50) 18.6 15.8
(0, -50) 15.2 23.1
(-50, 0) 15.0 23.7

(-50, -50) 18.9 31.6
(-50, 50) 18.75 29.8
(50, -50) 18.1 15.9

Overall, our results indicate that the final error of MPPI
is lower. Where the average final error over all of the runs
is 0.33m, and the average final error for iLQR is 1.47m. On
average, iLQR took a bit longer, with an average of 20.67
seconds to completion while the time for MPPI was only 16.81
seconds.

Over the course of one path, we compare the path taken
by the car (Fig. 7). We also compare the controlled velocity
output (Fig. 8) and the steering output (Fig. 9).

MPPI seems to have taken a straighter and more direct path
to the waypoint. We believe this is because MPPI isn’t relying
on pre-computed paths and is sampling new paths. So, it can
sample a direct path to the waypoint, whereas with iLQR and
FALCO, we are restricted to the limited set of pre-computed
paths, so it is possible that none of those paths aligned directly
with the most direct path to the waypoint.



Fig. 7. Velocity comparison of MPPI and iLQR.

Fig. 8. Velocity comparison of MPPI and iLQR.

VI. DISCUSSION

We suspect that one reason there is lower error from MPPI
is that we have more dynamic paths. This allows us to generate
paths that move more directly towards the waypoints. On the
other hand, FALCO-generated paths may not align directly
with the way point because they are static and pre-computed.
This behavior is exhibited in 7, where we can see the position
of the car from the MPPI travel more directly to the waypoint
when compared to iLQR.

Fig. 9. Steering angle comparison of MPPI and iLQR.

It is worth noting that there are some implementation details
that could also result in this behavior. For example, there are
hard coded constraints that disable the controller near a goal
position. This is to enable the system to stop moving, rather
than oscillate infinitely around the goal position. It is possible
this constraint is looser for the iLQR controller, meaning the
controller stops sooner than in our MPPI.

Additionally, the cost function between the two methods is
calculated differently. In the FALCO planner, the path with a
final point that has the shortest Euclidean distance to the goal
is selected, whereas MPPI’s cost is based directly on x and y
positions. Additionally, the hyperparameter tuning between the
two systems is different, as such it is possible that different Q
and R matrices are impacting the performance. However, since
our team has been using iLQR for several years now, we are
comfortable making the assumption that the iLQR has been
tuned to work its best in the software stack. So, we are satisfied
with the comparison we have thus far, and the performance of
our MPPI controller.

There are also differences in the commanded velocity and
steering angles between the two controllers. It is apparent
that the MPPI never quite hits the goal speed of 6 m/s. As
such, it is likely that if we decreased our control cost, we
would see more aggressive velocities. On the other hand, the
iLQR implementation hits the target speed more rapidly, then
decreases. This decrease is the result of other engineering
decisions in the iLQR implementation that decelerate the car
as it gets closer to a waypoint, whereas the MPPI has a zero
velocity output at the last step.

Next, there are also differences in the commanded steering
angle. In the MPPI controller, the steering angle is oscillatory.
This behavior is unideal, as such we may want to increase the
control cost of the steering angle to try and better damp the
response. However, we can see that the iLQR output is not
smoother nor less oscillatory. It is likely these controllers, in
the current tune, may have a hard time in real world scenarios
since they are commanding steering angle changes that may
not be physically possible.

A major issue in our current implementation is that we
rarely drive backward. We believe this is due to our sampling
about the last control input because we do generate backward
paths (Fig. 6). Since our next control commands are always
sampled about the previous control input, once the system
starts moving forward, it is likely to stay moving forward.

Unfortunately, our system can not avoid obstacles. We had
an occupancy grid implementation set up through the stack al-
ready, and we wanted to have obstacle avoidance implemented.
However, we were unable to integrate this correctly into our
cost function. The system can detect obstacles, however, it can
not maneuver around them. We gave the particular path that
crossed an obstacle an infinite cost, which would in turn imply
a close to zero weight given to that path while calculating the
weighted average. We thought that this would be equivalent to
cancelling the path, since the weight would effectively be zero.
However, this approach does not work well. Even though an
obstacle is detected and the paths have a high cost, the car still
prioritizes turning around (and hence crashing into the obstacle
in front) instead of stopping and reversing. We believe that that
our weighted averaging is not allowing negative paths to be
taken.



VII. CONCLUSION

This exploratory work sought to investigate the differences
between MPPI and FALCO/iLQR for use in autonomous
vehicle navigation with obstacle avoidance. Our experiments
demonstrate that MPPI has a lesser final error and faster speed
when compared to the iLQR. This is because MPPI is able to
generate more direct and straight paths to the goal waypoint as
compared to iLQR and FALCO, by virtue of sampling controls
randomly and generating new and unique paths in real time.

An extension of this work could involve sampling over the
knot points on a set of splines for trajectories, instead of
directly sampling the control sequence. This could possibly
lead to much smoother trajectories, as splines guarantee at
least C2 smoothness. This will also be computationally more
efficient, as we need to sample a lot fewer points. This is
because the number of knot points to be sampled is a lot
lesser than all the control inputs over the time horizon.

Current implementations of FALCO and iLQR autonomy
are limited by a reliance on reference trajectories. For this
reason, the system model for RC vehicles has remained a
simple four-state kinematic bicycle model which must be
differentiable. MPPI does not require a differentiable system
model, which makes it compatible with non-differentiable
models which may be necessary with complex neural net-
works.

One key limitation of this experiment is its lack of real-
world testing. As MPPI has a high known computational
cost, control executions may likely differ on-vehicle. Parallel
computing leveraging GPUs will be necessary for optimal real-
time performance on hardware. In real-world environments
with high dynamical variance and non-linearity (e.g. changing
or slippery terrain), MPPI is more likely to execute optimal
trajectories through its broader sampling of control outcomes
which inherently assess risk.
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IX. CODE REPOSITORY

All code produced for this project can be found in the
following repository:

https://github.com/dpmick/ocrl_mppi
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